271. The Basic Character of a-Methoxyanthraquinones.

By K. C. ROBERTS.

THE formation of salts by methoxyanthraquinones observed by Fischer (J. pr. Chem., 1911, 84, 369; 1912, 86, 297) is now shown to be peculiar to α -methoxyanthraquinones, and is explicable in terms of the views developed (J., 1929, 863, 1322; 1931, 520; this vol., p. 1792) to account for the similar characteristics of xanthones and thioxanthones containing methoxyl in the o-position to carbonyl.

The methods of examination are similar to those previously adopted. The mono- α -methoxyanthraquinones are not sufficiently basic to permit the isolation of salts by the methods successful with corresponding xanthone and thioxanthone derivatives. The mean alcohol-titration values (J., 1929, 869) are 19 c.c. for 1-methoxy-, 1:2-, and 1:3-dimethoxy-anthraquinones, 24 c.c. for 1-methoxyxanthones, and 30 c.c. for 1-methoxythioxanthones, 1:2-Dimethoxyanthraquinone forms a red stannichloride (I): a 1:2-dimethoxyanthraquinone stannichloride having the same composition is described by Pfeiffer (Annalen, 1913, 398, 187) as being non-bathochromic.

The presence of two carbonyl- α -methoxy-groups in the 1:4- and 1:5-dimethoxy-derivatives enhances the stability of the salts (titration values, 35 c.c. and 32 c.c. respectively). Both substances form red *diperchlorates* (II) and corresponding *chlorostannates*, B,H₂SnCl₆, but the red *stannichlorides* have the same composition as that found for the 1:2-derivative.

1:8-Dimethoxyanthraquinone is soluble in concentrated hydrochloric acid and, having a titration value of 75 c.c., is the most strongly basic of the derivatives examined. It yields a *chlorostannate* and a *chloroplatinate* derived from a diacid type $B_{H_2}XCl_6$, to which is ascribed the dichelate structure (III) assigned (this vol., p. 1793) to the salts of a 1:8-dimethoxythioxanthone.

EXPERIMENTAL.

Derivatives of a-Methoxyanthraquinones.---1: 2-Dimethoxyanthraquinone (from alizarin by the method of Baker and Robinson; J., 1928, 3116) formed with excess of SnCl₄ in C_6H_6 a deep red cryst. stannichloride (I), volatile at 150° in vac. (Found : Sn, 22·3. $C_{16}H_{12}O_4$, SnCl₄ requires Sn, 22·4%).

1:4-Dimethoxyanthraquinone, unlike the 1:2-derivative, yielded a red solution in HCl aq. and a red hydrochloride with dry HCl. The stannichloride was a brick-red solid, volatile at 150° in vac. (Found : Sn, 22·5%). The anthraquinone in C_6H_6 and 60% HClO₄ aq. gave an orange solid, which dried in vac. to a hygroscopic deep-magenta diperchlorate (II) (Found : HClO₄, 44·0. $C_{16}H_{12}O_{4}$,2HClO₄ requires HClO₄, 42·8%) : this also separated in permanganate-coloured needles from the hot reagent. A chlorostannate was obtained from SnCl₄ and the anthraquinone in C_6H_6 saturated with HCl as a violetblack flocculent material which became orange-coloured on removal of C_6H_6 (Found : Sn, 19·7. $C_{16}H_{12}O_4$, H_2 SnCl₆ requires Sn, 19·7%) : an orange form was obtained with the aq. reagent. Orange hydrated chloroplatinates were similarly obtained with aq. H_2 PtCl₆, the formulæ probably being $C_{16}H_{12}O_4$, H_2 PtCl₆, nH_2O . Heated in vac. at 110°, they gave a deep purple material apparently retaining H_2O .

1:5-Dimethoxyanthraquinone yielded a red solution in HCl aq. and a

BACKEBERG :

yellow hydrochloride with dry HCl. The stannichloride was a brick-red cryst. substance volatile at 150° in vac. (Found : Sn, 22.1. C16H12O4,SnCl4 requires Sn, 22.4%). The purple-black cubes, with a metallic lustre, of the diperchlorate (II) (Found : HClO₄, 40.6. C₁₆H₁₂O₄,2HClO₄ requires HClO₄, $42{\cdot}8\,\%)$ deposited from hot aq. $60\,\%$ $\mathrm{HClO_4}$ were extremely hygroscopic and rapidly became yellow in air. The chlorostannate was obtained in contact with C_6H_6 as a deep blue flocculent material which when purified for analysis in contact with C6H6 vapour became orange-brown (Found: Sn, 15.7. C₁₆H₁₂O₄,H₂SnCl₆,2C₆H₆ requires Sn, 15.7%): the blue material, purified in vac. over paraffin, became red, but retained a small amount of C₆H₆ (Found : $C_{16}H_{12}O_4, H_2SnCl_6$ requires Sn, 19.7%. $2C_{16}H_{12}O_4, H_2SnCl_6$ Sn, 18.2. requires Sn, 13.6%). The hydrated yellow chloroplatinate dried at room temperature to a deep brown substance (Found: Pt. 23.6. C16H12O4, H2PtCl6,8H2O requires Pt, 23.7%).

1:8-Dimethoxyanthraquinone yielded an orange solution in HCl aq. but did not absorb dry HCl. It did not form a stannichloride, but in presence of a very large excess of SnCl₄ a scarlet *chlorostannate* (as III) resulted (Found : Sn, 19.6. $C_{16}H_{12}O_4$, H_2 SnCl₆ requires Sn, 19.7%), which was also obtained by usual methods (Found : Sn, 19.4%). The *chloroplatinate* (as III) was obtained as yellow needles, which yielded a stable reddish-brown form when dried over P_2O_5 in vac. at 110° (Found : Pt, 21.6; H_2O , 24.3.

 $C_{16}H_{12}O_4, H_2PtCl_6, 12H_2O$

requires Pt, 21.8; H_2O , 24.1%): intermediate scarlet and magenta stages were observed during dehydration. An orange *monoperchlorate* crystallised from the hot reagent in needles (Found : HClO₄, 27.6. C₁₆H₁₂O₄, HClO₄ requires HClO₄, 27.2%), which absorbed *ca.* 3 mols. H₂O from the air, giving a stable yellow hydrate.

KING'S COLLEGE, LONDON.

[Received, May 24th, 1932.]